Лекция 10.

zmin – минимальное количество зубьев нулевого зубчатого колеса, которое можно нарезать без подреза.

где a = 20о , ha* = 1.

Т.к. z должно быть целым, при zmin = 18 гарантировано, что подреза не будет.

4.6.3 Основные расчетные зависимости для определения параметров зубчатого колеса, исходя из схемы станочного зацепления.

1.     Радиус окружности вершин ra.

ra = r + xm + ha*m – Δуm (1)

Δуmуравнительное смещение инструмента (расстояние между граничной прямой инструмента и окружностью вершин заготовки).

Δу вводится в расчет для того, чтобы при создании зубчатой передачи с колесами z1 и z2 было бы обеспечено зацепление этих колес без бокового зазора при стандартном радиальном зазоре.

2.     Радиус окружности впадин rf.

rf = r – ha*m – c*m + xm (2)

3.     Определение высоты зуба.

h = rarf = 2 ha*m + c*m – Δуm (3)

4.     Определение коэффициента изменения толщины зуба.

Δ=2.x.tga

5. Специальные передаточные (планетарные) механизмы.

Планетарным называется механизм, имеющий в своем составе хотя бы одно звено с подвижной геометрической осью в пространстве.

Звено, имеющее подвижную геометрическую ось в пространстве, называется сателит.

Звено, на которое устанавливают ось сателитов, называется водило (Н).

Зубчатые колеса, имеющие неподвижную геометрическую ось в пространстве, называются центральными.

Центральное колесо, имеющее внешние зубья, называется солнечное колесо.

Центральное колесо, имеющие внутренние зубья, называется коронная шестерня (опорное колесо).

Достоинства планетарных передач:

1.     имеют малые габариты и вес из-за того, что поток мощности, подводимый к центральному колесу, распределяется по к сателитам (к – количество сателитов). Затем поток мощности собирается на выходном звене. На одной планетарной передаче можно поставить до 24 сателитов.

2.     очень высокий КПД, в среднем 0.99.

Недостатки:

Если число сателитов неравно 3, то необходим специальный механизм, который бы выравнивал нагрузку между сателитами. Этот механизм утяжеляет и удорожает конструкцию.

5.1 Сравнительный анализ передачи с неподвижными осями планетарной передачи.

На первое колесо подается крутящий момент, а со второго снимают.

Ось В неподвижна Ось В подвижна

 

u1-2 == u1-Н =

Через число зубьев u1-Н записать нельзя, т.к. ось В – подвижная ось.

Чтобы записать передаточное отношение планетарного механизма через число зубьев, применим метод обращения движения (как бы искусственно обратим планетарный механизм в механизм с неподвижной осью В). Для этого мысленно сообщим всем звеньям механизма, включая стойку, дополнительное движение с угловой скоростью -w н. Получим обращенный планетарный механизм с неподвижными осями зубчатых колес.

В обращенном движении звенья этого механизма будут иметь следующие угловые скорости:

w 1* = w 1w Н

w 2* = w 2 + (– w Н) = w 2 w Н

w Н* = w Нw Н = 0

  - формула Виллиса

5.2 Определение передаточного отношения планетарных механизмов различных схем.

5.2.1 Планетарный однорядный механизм (механизм Джеймса).

КПД в одном ряду – 0.99

Передаточное отношение можно определить:

1.     графическим способом по чертежу;

2.     аналитическим способом, используя формулу Виллиса.

Графический способ определения передаточного отношения.

Выберем на водиле Н точку F которая расположена на том же расстоянии от оси О2, что и точка А.

Оси О1 и О2 расположены на одном уровне.

Для данной схемы входное звено – звено 1 (солнечное колесо), выходным является водило Н.

Зададимся отрезком АА’, который изображает линейную скорость колеса 1 в точке А. Т.к. колесо 1 вращается вокруг О1, то закон распределения линейной скорости по первому звену изображается прямой линией О1А’. Сателит 2 в т имеет такую же линейную скорость, что и колесо 1. В т сателит 2 имеет МЦС в абсолютном движении, т.к. идет контакт с неподвижным колесом 3. Закон распределения линейной скорости по второму колесу изображается прямой линией СА’. В т сателит имеет линейную скорость, которая изображается отрезком ВВ’, однако т.В является также и осью водила Н, которое вращается вокруг О2. Следовательно, закон распределения линейной скорости по водилу изобразиться прямой линией О2В’. Для точки F водила линейная скорость изображается отрезком FF’.

От вертикали до линии распределения скоростей по водилу измеряем угол ψн, а от вертикали до линии распределения скоростей по колесу 1 измеряем угол ψ1. Т.к. углы ψ1 и ψн отложены от вертикали в одном направлении, то это показывает, что входное звено 1 и выходное звено вращаются в одном направлении.

Аналитический способ определения передаточного отношения.

Применим метод обращения движения, обратив планетарный механизм в непланетарный.

w 1* = w 1w Н

w 3* = w 3w Н = – w Н

  - плюсовой механизм.