Лекция 8.

Сопряженные поверхности – поверхности, которые постоянно или с определенной периодичностью входят в зацепление друг с другом.

По отношению к начальным окружностям сопряженные поверхности могут занимать различные положения. Правильным положением является то, которое удовлетворяет основной теореме зацепления, теореме о мгновенном передаточном отношении, которое формулируется следующим образом:

Общая нормаль, проведенная в точке контакта сопряженных поверхностей, проходит через линию центров О1О2 и делит эту линию на части, обратно пропорциональные отношению угловых скоростей.

Передаточное отношение

"-" если зацепление внешнее;

"+" если зацепление внутреннее;

(см рис. 4.4.1)

Сопряженные профили должны удовлетворять следующим требованиям:

1.     быть простыми в изготовлении (технологичными);

2.     иметь высокий КПД.

Таким требованиям удовлетворят эвольвентные профили.

4.3 Эвольвента и ее свойства.

Эвольвента образуется путем перекатывания производящей прямой KyNy без скольжения по основной окружности радиуса rb.

Радиус произвольной окружности – ry. ONy || t t

Из треугольника ONyKy следует, что

(1)

Т.к. KyNy перекатывается без скольжения по основной окружности, то

rb(q y + a y) = rb.tg a y

q y = tg a y - a y (2)

q y = inv a y

q y – инволюта;

Уравнения (1) И (2) являются уравнениями эвольвенты в параметрической форме.

a у – угол профиля эвольвенты для точки Ку, лежащей на произвольной окружности.

a – угол профиля эвольвенты для точки К, лежащей на делительной окружности радиуса r.

Угол профиля эвольвенты для точки Кb, лежащей на основной окружности, равен нулю: a b=0.

Свойства эвольвенты.

1.     Форма эвольвенты зависит от радиуса основной окружности. При стремлении rb,эвольвента превращается в прямую линию (пример рейка).

2.     Производящая прямая KyNy является нормалью к эвольвенте в данной тоске.

3.     Эвольвента начинается от основной окружности. Внутри основной окружности точек эвольвенты нет.

4.4 Элементы эвольвентного зубчатого колеса (рис.8-86).

Делительной окружностью называется окружность стандартных шага р, модуля m и угла профиля a .

Шаг – расстояние между одноименными точками двух соседних профилей зубьев, измеренные по дуге соответствующей окружности.

Модулем называется часть диаметра делительной окружности, приходящаяся на один зуб.

Модуль m,[мм] – стандартная величина и определяется по справочникам, исходя из трех рядов:

1 ряд – наиболее предпочтительный;

2 ряд – средней предпочтительности;

3 ряд – наименее предпочтительный.

Модуль является масштабным фактором высоты зуба. Чем больше модуль, тем выше высота зуба, тем больше плечо силы P, вызывающей изгибные напряжения у основания зуба.

Угол профиля – угол между касательной к эвольвенте в данной точке и радиус-вектором этой точки (см. чертеж эвольвенты).

Угол профиля для точки, лежащей на делительной окружности, является величиной стандартной и равной 20о (хотя лучше 25о).

1.     Основные расчетные зависимости для определения параметров эвольвентного зубчатого колеса.

1. Число зубьев z; 2. Модуль m; 3. Ширина венца b; 4.Высота зуба h; 5. Диаметры зубчатого колеса: делительный d=mz; вершин зубьев da; впадин df ; сновной db; произвольный dy; 6. Окружной шаг: делительный p=πm; по произвольной окружности Py; Окружная толщина зуба S, Sa; окружная толщина впадины e; 7. Угловой шаг τ=360˚/z; угловая толщина зуба 2ψ; 8. Угол профиля зуба на делительной окружности α; 9. Эвольветные углы: inv αy ; inv αa;10. Радиус кривизны перехода профиля ρf.

Рис.8-86. Элементы и основные параметры эвольвентного прямозубого колеса.

Из (1) следует, что радиус делительной окружности

;   (3)

модуль по ГОСТу определяется

2p .r = p.à   

m = p / p  à   

p = p .m  (4)

(5)

2p .ry = py.z

à   

(6)

по основной окружности

a y = 0  à   pb = p cos 20o (7)

2.     Виды зубчатых колес.

p = s + e (8)

s = + Δ.m (9)

где Δкоэффициент изменения толщины зуба.

В зависимости от знака коэффициента Δ различают виды зубчатых колес:

1.     Δ = 0 s = e = p/2 нулевое зубчатое колесо;

2.     Δ > 0 s > e положительное зубчатое колесо;

3.     Δ < 0 s < e отрицательное зубчатое колесо.

4.     Эвольвентная зубчатая передача и ее свойства (рис. 11-86).

aw - межосевое расстояние; αw - угол зацепления;

ym - воспринимаемое смещение; C - радиальный зазор;

g -длина линии зацепления N1N2 ; gα - длина активной линии зацепления;

Р - полюс зацепления; rw1, rw2- радиусы начальных окружностей;

φα1 - угол торцевого перекрытия зубчатого колеса.

Рис.11-86. Элементы и основные параметры эвольвентной зубчатой передачи

Эвольвентную зубчатую передачу составляют, как минимум, из 2-х зубчатых колес, при этом в рассмотрение вводится две начальные окружности радиусами rw1 и rw2.

Меньшее зубчатое колесо в обычной понижающей зубчатой передаче называется шестерня.

Вместо производящей прямой здесь вводится в рассмотрение линия зацепления N1N2, которая одновременно касается 2-х основных окружностей rb1 и rb2.

Линия зацепления является геометрическим местом точек контакта сопряженных эвольвентных профилей. В точке В1 пара эвольвент, которые в данный момент времени контактируют в точке К, вошли в зацепление. В точке В2 эта же пара эвольвент из зацепления выходят.

На линии зацепления N1N2 все взаимодействующие эвольвенты при зацеплении касаются друг друга. Вне участка N1N2 эвольвенты пересекаются, и если такое случится, то произойдет заклинивание зубчатого колеса (9-86).

Рис.9-86. Интерференция эвольвет при внешнем зацеплении

а) интерференция эвольвет

б) подрез зуба

Угол N1O1P = N2J2P = a w – угол зацепления.

Для передачи, составленной из нулевых зубчатых колес a w=20o

Для передачи, составленной из положительных з. к. a w>20o

Для передачи, составленной из отрицательных з. к. a w<20o

c=c*.m - радиальный зазор, величина стандартная, необходим для нормального обеспечения смазки.

c* - коэффициент радиального зазора, по ГОСТ c*=0.25 (c*=0.35).

Расстояние между делительными окружностями у.m – это воспринимаемое смещение.

укоэффициент воспринимаемого смещения, он имеет знак, и в зависимости от знака различают:

1. у=0 у.m=0 нулевая зубчатая передача;

2. у>0 у.m>0положительная зубчатая передача;

3. у<0 у.m<0отрицательная зубчатая передача;

Свойства эвольвентного зацепления.

1.     Эвольвентное зацепление молочувствительно к погрешностям изготовления, т.е. при отклонении межосевого расстояния от номинала передаточное отношение зубчатой передачи не изменится.

2.     Линия зацепления N1N2 является общей нормалью к сопряженным эвольвентным профилям.

3.     Контакт эвольвент осуществляется только на линии зацепления.